

INTELLIGENT SYSTEMS (CSE-303-F)

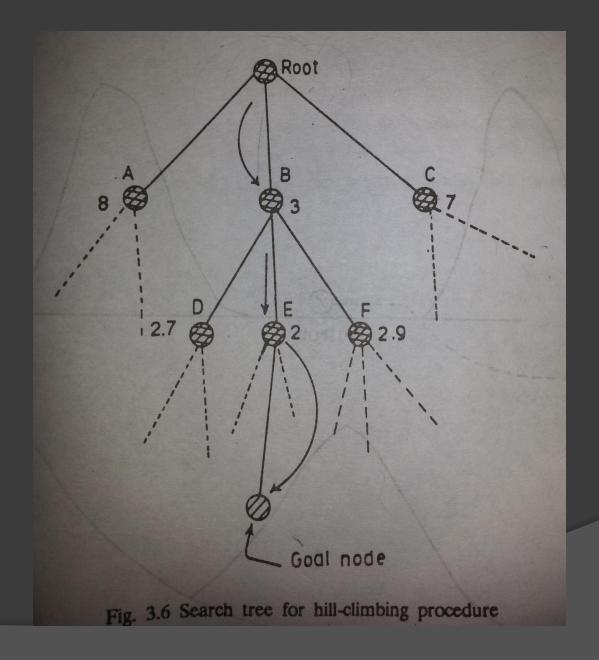
Section A

Informed Search

Heuristic Search Techniques

- Hill Climbing
- Best First Search
- A* Algorithm
- AO* Algorithm

Hill Climbing


- Uses simple heuristic function i.e. the amount of distance the node is from goal.
- ALGORITHM:

Step 1: Put the initial node on list START Step 2: If (START is empty) or (START=GOAL) terminate search

Step 3: Remove the first node from START. Call this node a. <u>Step 4: If (a=GOAL) terminate search</u> with success

Step 5: Else if node has a successor, generate all of them. Find out how far they are from goal node. Sort them by remaining distance from the goal and add them to the beginning of START.

Step 6: Go to Step 2.

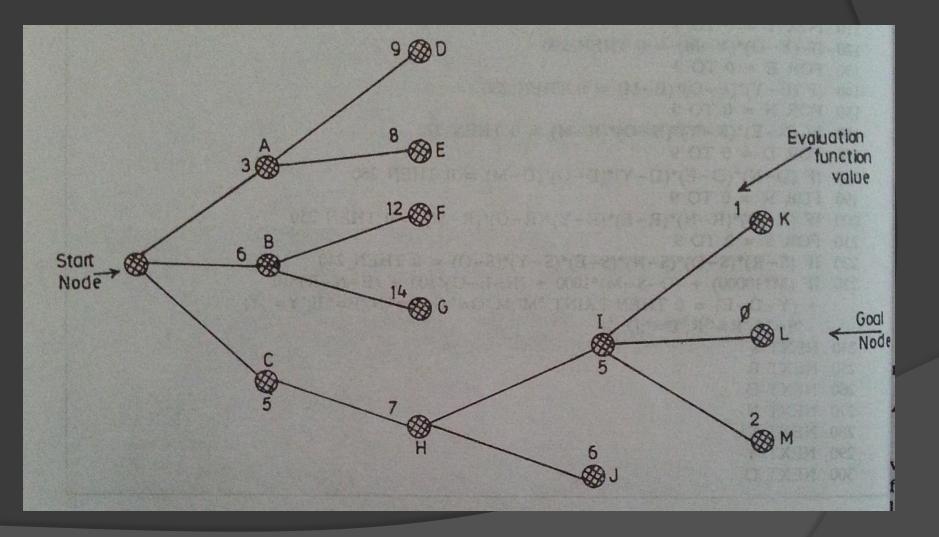
Problems with Hill Climbing

- Local Maximum : A state that is better than all its neighbors but is not better than some other states farther away.
- Plateau: A flat area in which set of neighboring states have same value.
- Ridge: Movement in any direction leads to same level o result.

Best First Search

- Heuristic function used is an evaluation function (indicates how far node is from goal node)
- Goal node has an evaluation function of zero.

Algorithm


Step 1: Put the initial node on list START Step 2: If (START is empty) or (START=GOAL) terminate search

Step 3: Remove the first node from START. Call this node a.

Step 4: If (a=GOAL) terminate search with success

Step 5: Else if node has a successor, generate all of them. Find out how far they are from goal node. Sort all children generated so far by the remaining distance from goal. Step 6: Go to Step 2.

Example

Cian #	Node hai		at the second second second	
Step #	Node being expanded	Children	Available nodes	Node Chosen
1	S	(A:3), (B:6), (C:5)	(A:3), (B:6), (C:5)	(A:3)
2	А	(D:9), (E:8),	(B:6), (C:5), (D:9), (E:8)	(C:5)
3	С	(H:7)	(B : 6), (D : 9), (E : 8), (H : 7)	
4	B	(F: 12), (G: 14)	(D:9), (E:8), (H:7) (F:12), (G:14)	
5	H	(I:5), (J:6)	(D:9), (E:8), (F:12) (G:14), (I:5), (J:6)	(I:5)
6	I	(K : 1), (L : 0) (M : 2)	(D:9), (E:8), (F:12) (G:14), (J:6), (K:1) (L:0), (M:2)	Search stops as goal is reached

- There is only minor variation between hill climbing and best first search
- In first approach, the children of first node are being generated
- But in second approach, we have to sort entire list to identify next node to be expanded.

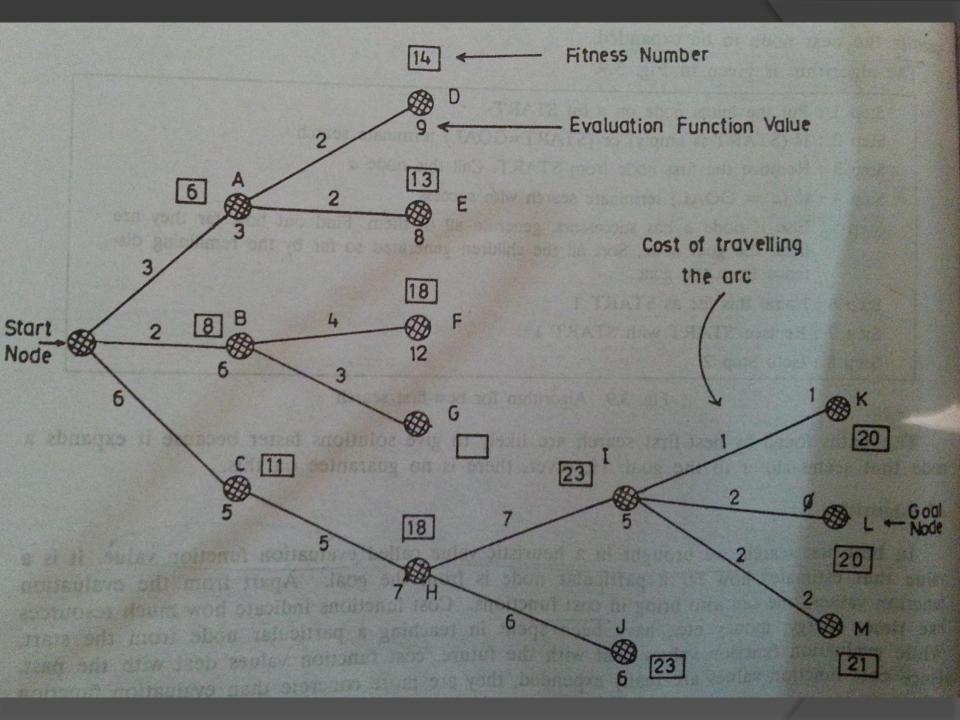
A* Algorithm

- Uses evaluation function and cost functions as heuristic.
- Sum of evaluation function and cost leading to goal state is called fitness value.

Algorithm

Step 1: Put the initial node on list START Step 2: If (START is empty) or (START=GOAL) terminate search

Step 3: Remove the first node from START. Call this node a.


Step 4: If (a=GOAL) terminate search with success

Step 5: Else if node has a successor, generate all of them. Estimate the fitness number of the successors by totaling the evaluation function value and cost function value. Sort the list by fitness number.

Step 6: Name the new list as START 1.

Step 7: Replace start with START 1.

Step 8: Go to Step 2.

